

Getting the Network Security Basics Right

Paul Bartock
The Mitigations Group (I43)

Information Assurance Directorate
National Security Agency

1 Nov 2011

Who We Are

What We Do

- We Discover and Analyze vulnerabilities in...
 - in the core concepts of security
 - in emerging technologies and products
- We conduct operations to find vulnerabilities...
 - in the operational environment (networking, signals, space...);
 - as revealed thru content (e.g. log files)
- We Translate vulnerability knowledge...
 - into summaries, trends, root cause.
- We Lead the Community...
 - in the improvement of security practice;
 - in guidance, training, education, and standards development.

Our Presence

■ We're VERY public

- (Press) FCW/GCN, WTOP, Washington Post, SC Magazine, Information Week, Government Executive, etc.....
- (Presentation) Blackhat/DEFCON, RSA, Lumension 360, IAWS, SC Forum, ITSEF, CISO, SANS
- (Awards) SC Magazine, Fed 100, GovExec, SANS

We create and give away LOTS of great content

- FAM Folders
 - 4000+ given out
- Security Configuration Guides
 - 75+ created and posted
 - 7 more in development this year

Lessons Learned

- The optimal place to solve a security problem is ...
- If it is happening to you today, then ...
- After you figure out what happened, there were ...
- Information Sharing is ...

Lesson 1

The optimal place to solve a security problem is ... never where you found it.

--Corollary: the information for the solution is never in the right form for the solution

Lessons Learned

- The optimal place to solve a security problem is ...
- If it is happening to you today, then ...
- After you figure out what happened, there were ...
- Information Sharing is ...

Lesson 2

If it is happening to you today, then ...

...something very much like it happened to someone else yesterday, and will happen to someone else tomorrow.

--Corollary: and you probably don't know them

Lessons Learned

- The optimal place to solve a security problem is ...
- If it is happening to you today, then ...
- After you figure out what happened, there were ...
- Information Sharing is ...

Lesson 3

After you figure out what happened, there were...plenty of signs that *could* have helped us prevent or manage this.

--Corollary: but not all the signs are in "cyberspace", or available to "cyber defenders"

Lessons Learned

- The optimal place to solve a security problem is ...
- If it is happening to you today, then ...
- After you figure out what happened, there were ...
- Information Sharing is ...

Lesson 4

Information Sharing is ...

Over-rated!

--Corollary: until you think about Purpose, Content, Plumbing, and the Framework.

Information Sharing is over-rated

unless we decide on a shared PURPOSE,

which will determine the necessary CONTENT,

which we must move via standard PLUMBING,

which we must enforce within a FRAMEWORK.

Automation Landscape

Security Content

Standards Plumbing

- NIST Checklists
- •NSA Guides
- •DISA STIGs
- •IT Mgmt Data
- Threat Reports
- Signatures,

indicators

Ops Test Data

- •SCAP
- •TNC
- •CVE
- •CWE
- •CEE
- •....

- **Capabilities**
- Net Mgmt
- Scanners
- Patching
- Asset Mgmt
- Whitelisting

Use Cases

- Dept of State iPost
- DoD CND DataSharing Pilot
- •IC "Gold Standard"
- DoD Sensor Grid
- •IA Campaign Plan

- Comply & Connect: perform an SCAP based assessment using TNC protocols
- Pro-active detection & monitoring & quarantine of assets for un-authorize connections (detection of connection attempts to known bad IPs and domains, via router/ids black list connections)

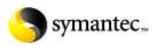
Network sensing and Response. Security sensors detect suspicious activity (e.g. traffic sent to known bad IP addresses) and publish this information, which triggers further investigations such as checking caches on other devices to see if they have the same problem. This use case can be implemented through IF-MAP 2.0.

Trends. Administrators get visibility into warning signs by viewing activity on a console. This use case is enabled by IF-MAP 2.0 but nobody has implemented it yet.

Rescan for new policy. When an SCAP policy changes, endpoints should be rescanned and their network access modified accordingly. For example, non-compliant endpoints might be quarantined until remediation can be completed.

Information sharing across administrators. The MAP provides a single shared database that allows administrators to have a common view of what's happening on their network. Tricky and interesting issues arise when sharing information across trust boundaries (i.e. from one organization to another). Information may be summarized.

Dashboard. Executives and commanders often want a global view of security issues. Which areas of the world are seeing the most attacks? The most compliance or non-compliance? They may also want to drill down to get more information. IF-MAP enables this sort of data to be amassed and exchanged among security systems in a standard way. Thinking is those executives generally view things from a risk perspective. Infections on a critical system are more important than those on a less important one.



SCAP Vendor Partners

McAfee®

Trusted Network Connect Standards for Network Security

Agenda

Introduce TNC and TCG

Explanation of TNC

- What problems does TNC solve?
- How does TNC solve those problems?
- TNC Architecture and Standards
- TNC Adoption and Certification
- TNC Advantages
- Case Studies

Summary

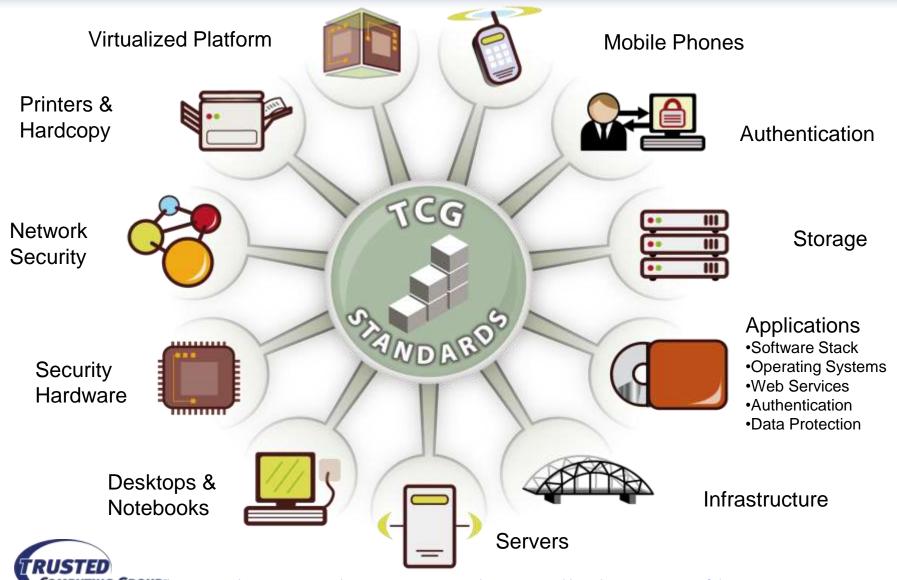
For More Information

Trusted Network Connect

Open Architecture for Network Security

- Completely vendor-neutral
- Strong security through trusted computing
- Original focus on NAC, now expanded to Network Security

Open Standards for Network Security


- Full set of specifications available to all
- Products shipping since 2005

Developed by Trusted Computing Group (TCG)

- Industry standards group
- More than 100 member organizations
- Includes large vendors, small vendors, customers, etc.

TCG: Standards for Trusted Systems

Trusted Platform Module (TPM)

Security hardware on motherboard

- Open specifications from TCG
- Resists tampering & software attacks

Now included in almost all enterprise PCs

Off by default; opt in

Features

- Secure key storage
- Cryptographic functions
- Integrity checking & remote attestation

Applications

- Strong user and machine authentication
- Secure storage
- Trusted / secure boot

Problems Solved by TNC

Network and Endpoint Visibility

- Who and what's on my network?
- Are devices on my network secure? Is user/device behavior appropriate?

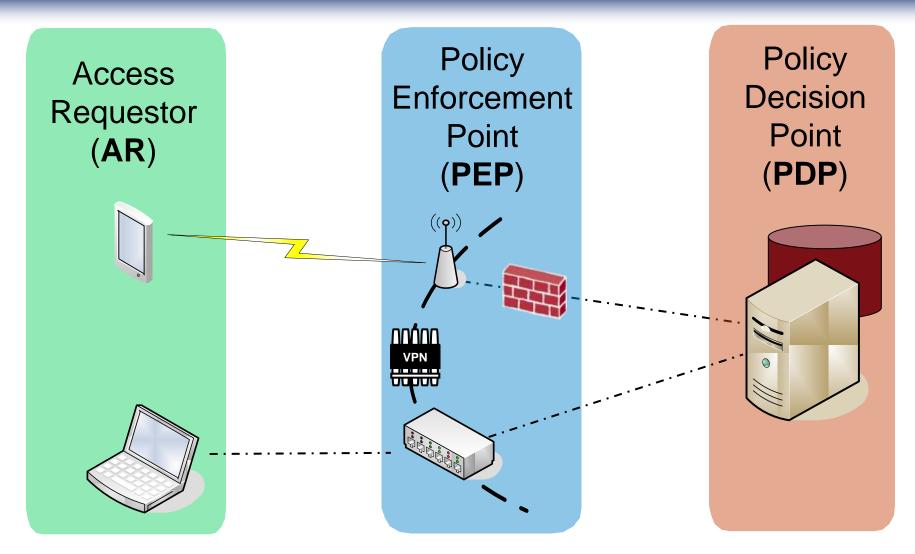
Network Enforcement

Network Access Control (NAC)

- Block unauthorized users, devices, or behavior
- Grant appropriate levels of access to authorized users/devices

Device Remediation

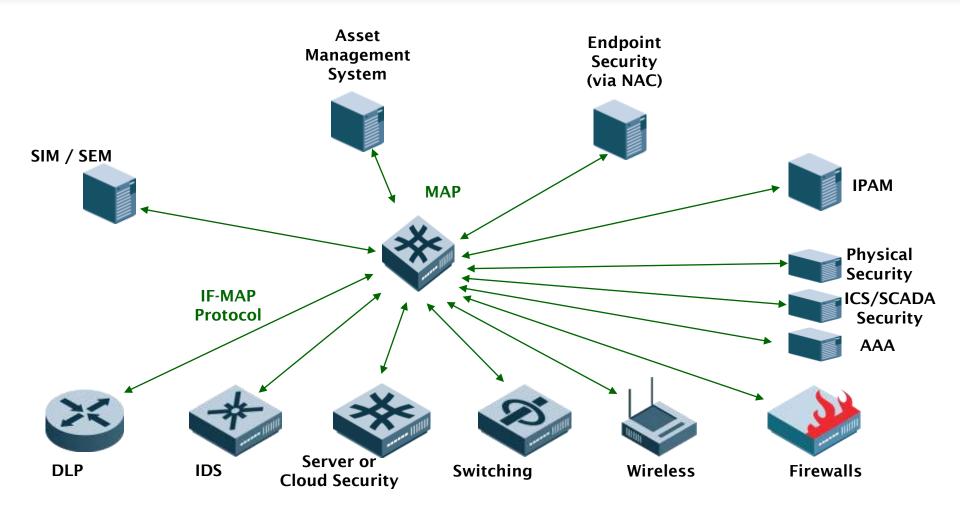
Quarantine and repair unhealthy or vulnerable devices


Security System Integration

Coordinate

• Share real-time information about users, devices, threats, &cSecurity

Basic NAC Architecture

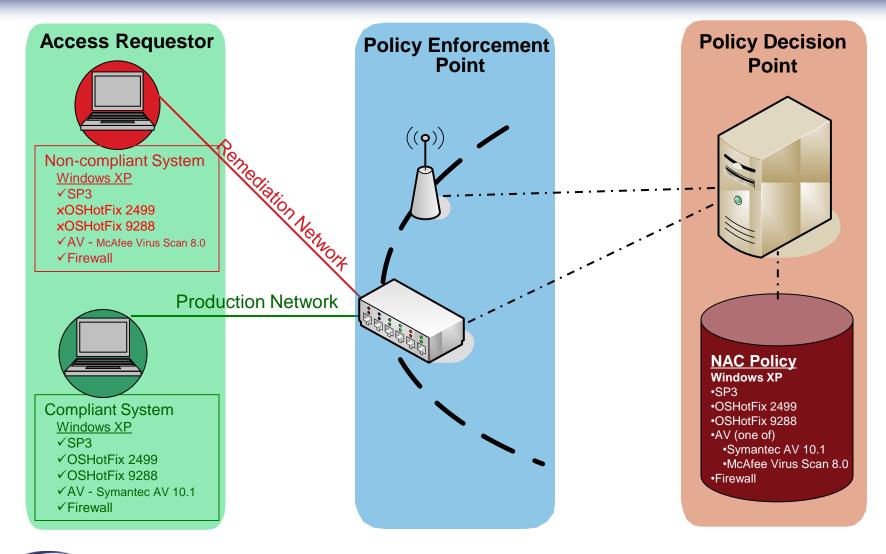


Integrating Other Security Devices

Coordinated Security

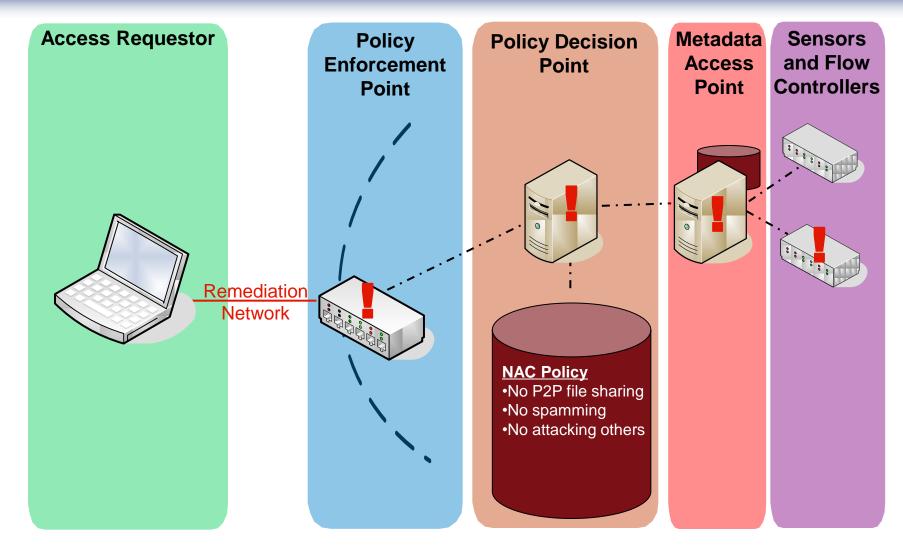
Typical TNC Deployments

Health Check

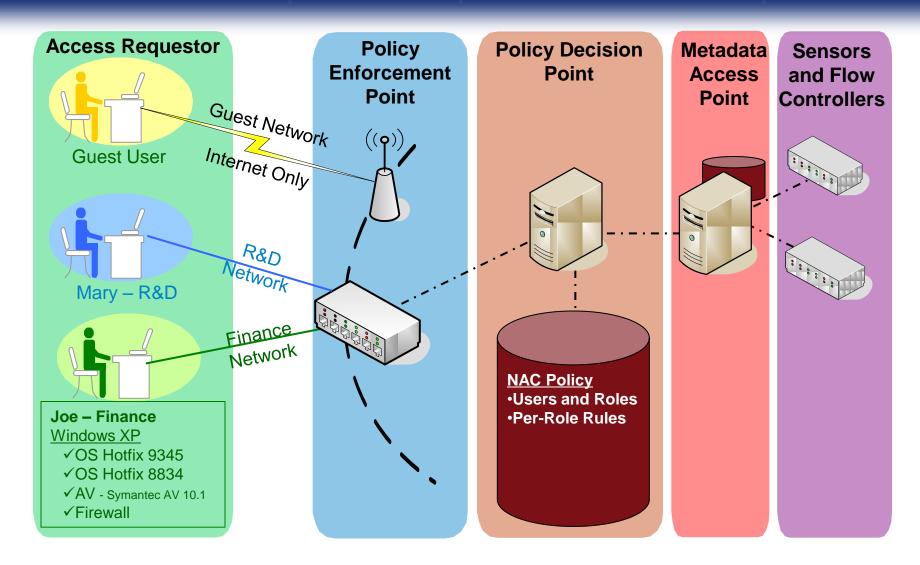

Behavior Check

User-Specific Policies

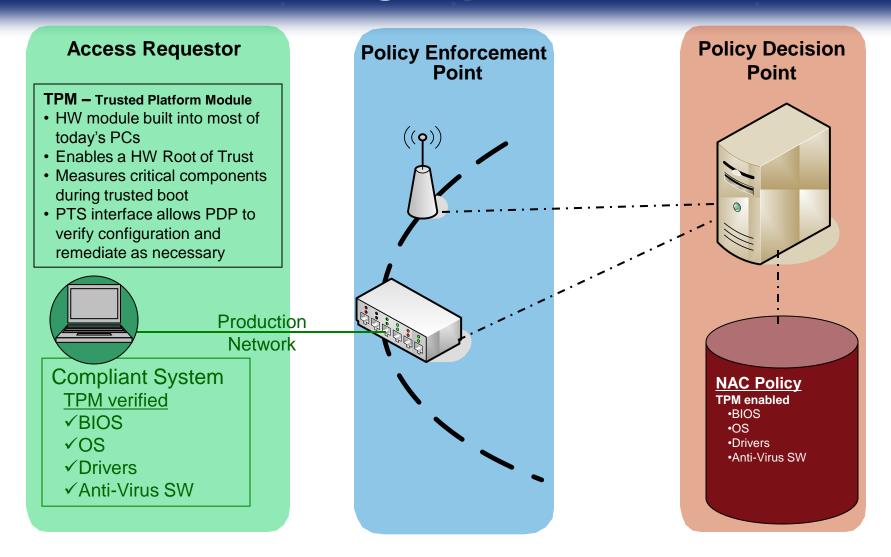
TPM-Based Integrity Check



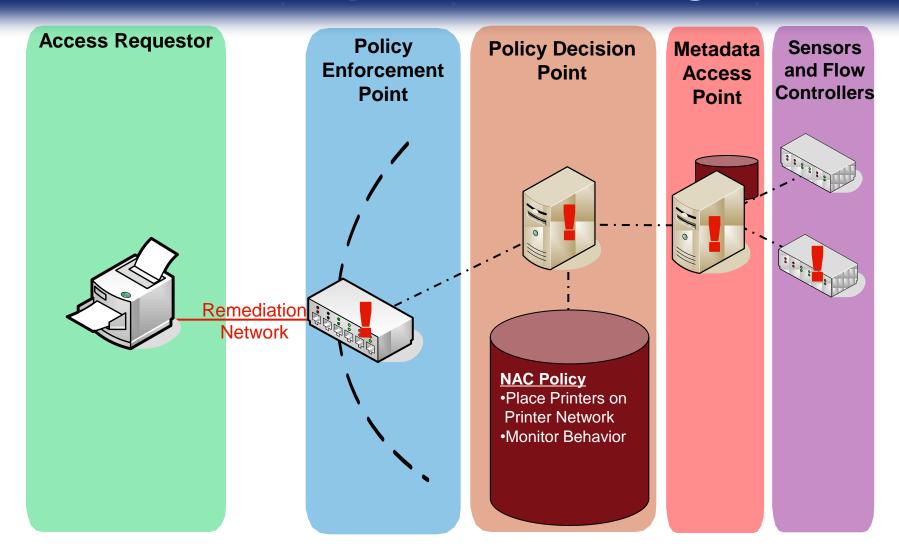
Health Check



Behavior Check



User-Specific Policies



TPM-Based Integrity Check

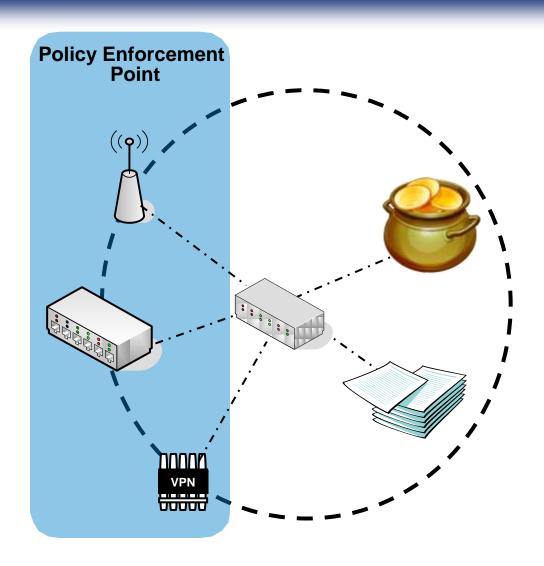
Clientless Endpoint Handling

Enforcement Options

Edge Enforcement

Inline Enforcement

Protocol-Based Enforcement

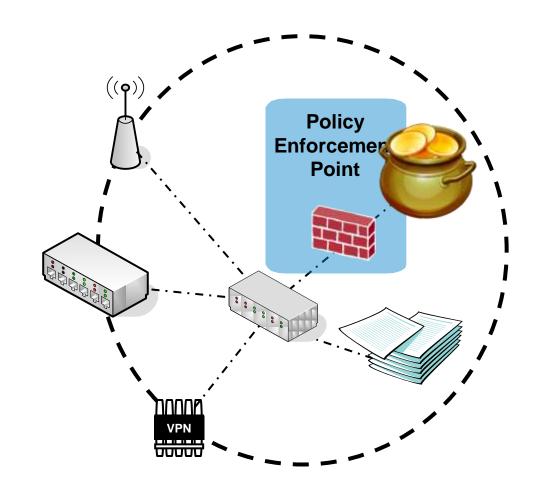

Edge Enforcement

Pros

Simple

Cons

- Big change
- Hard for legacy endpoints

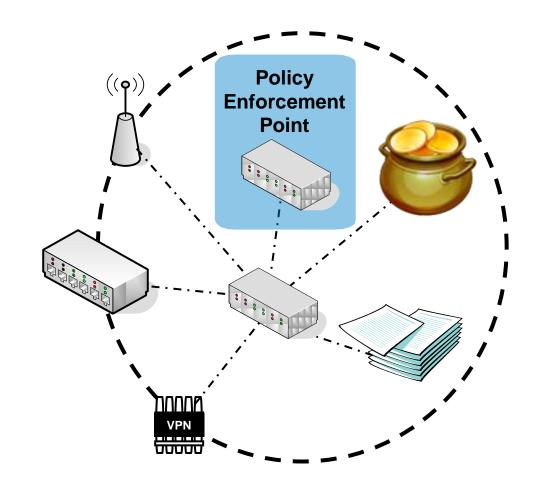

Inline Enforcement

Pros

Gradual or partial deployment

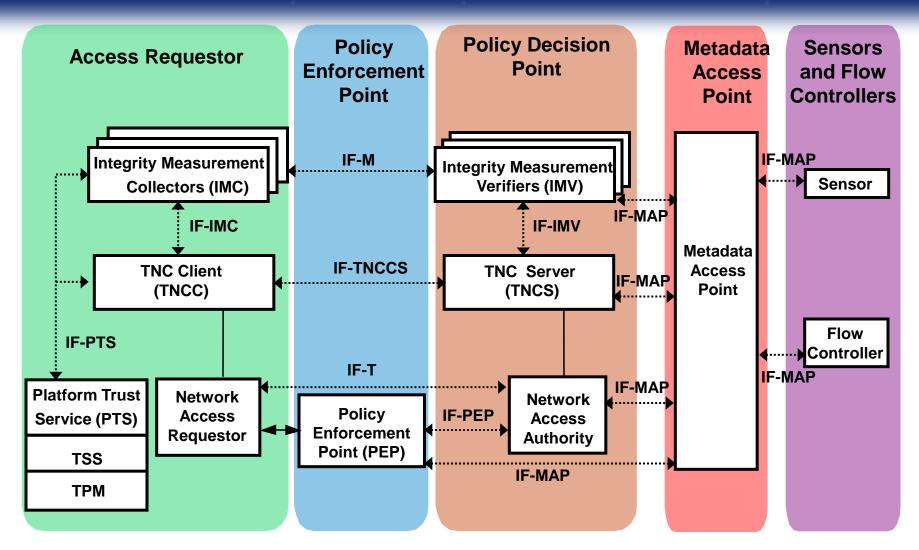
Cons

- Security varies
 - IPsec/TLS vs.
 IP/MAC authn


Protocol-Based Enforcement

Pros

Easy deployment


Cons

- Low security
 - Nothing inline
- Problematic

TNC Architecture

http://www.trustedcomputinggroup.org/developers/trusted_network_connect/specifications

Foiling Root Kits with TPM and TNC

Solves the critical "lying endpoint problem"

TPM Measures Software in Boot Sequence

- Hash software into PCR before running it
- PCR value cannot be reset except via hard reboot

During TNC Handshake...

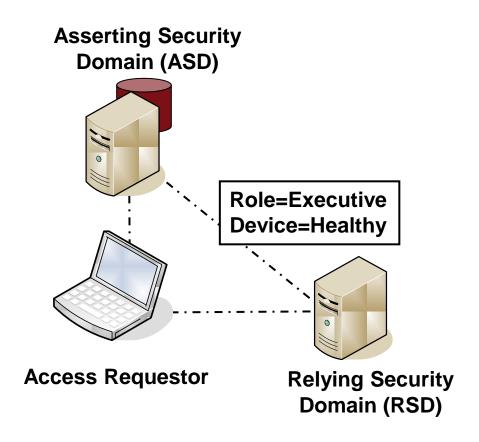
- PDP engages in crypto handshake with TPM
- TPM securely sends PCR value to PDP
- PDP compares to good configurations
- If not listed, endpoint is quarantined and remediated

Federated TNC

Conveys TNC results between security domains

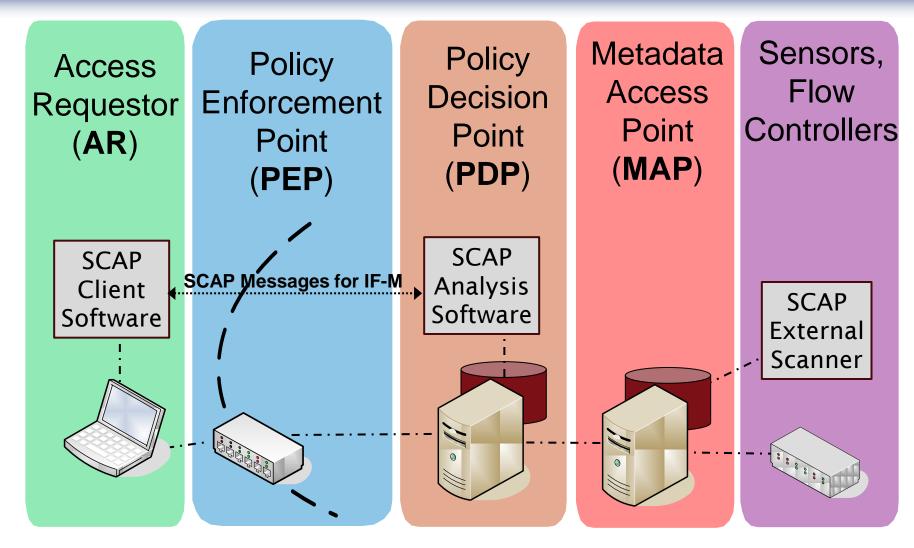
- Consortia, coalitions, partnerships, outsourcing, and alliances
- Large organizations

Supports


- Web SSO with health info
- Roaming with health check

How?

SAML profiles for TNC


Applications

- Network roaming
- Coalitions, consortia
- Large organizations

TNC and SCAP Together

TNC: A Flexible Architecture

Assessment Options

- Identity, health, behavior, and/or location
- Optional hardware-based assessment with TPM
- Pre-admission, post-admission, or both

Enforcement Options

802.1X, firewalls, VPN gateways, DHCP, host software

Clientless endpoints

- No NAC capabilities built in
- Printers, phones, robots, guest laptops

Information sharing

- IF-MAP lets security devices share info on user identity, endpoint health, behavior, etc.
- Federated TNC supports federated environments

TNC Advantages

Open standards

- Non-proprietary Supports multi-vendor compatibility
- Interoperability
- Enables customer choice
- Allows thorough and open technical review

Leverages existing network infrastructure

Excellent Return-on-Investment (ROI)

Roadmap for the future

- Full suite of standards
- Supports Trusted Platform Module (TPM)

Products supporting TNC standards shipping today

TNC Adoption

Access Requestor

Policy Enforcement Point

Policy Decision
Point

Metadata Access Point

Sensors, Flow Controllers

Microsoft NAP Interoperability

IF-TNCCS-SOH Standard

- Developed by Microsoft as Statement of Health (SoH) protocol
- Donated to TCG by Microsoft
- Adopted by TCG and published as a new TNC standard, IF-TNCCS-SOH

Availability

- Built into Windows Vista, Windows 7, Windows Server 2008, and Windows XP SP 3
- Also built into products from other TNC vendors

Implications

- NAP servers can health check TNC clients without extra software
- NAP clients can be health checked by TNC servers without extra software
- As long as all parties implement the open IF-TNCCS-SOH standard

IETF and TNC

IETF NEA WG

- Goal: Universal Agreement on NAC Client-Server Protocols
 - Co-Chaired by Cisco employee and TNC-WG Chair

Published several TNC protocols as IETF RFCs

- PA-TNC (RFC 5792) and PB-TNC (RFC 5793)
- Equivalent to TCG's IF-M 1.0 and IF-TNCCS 2.0
- Co-Editors from Cisco, Intel, Juniper, Microsoft, Symantec

Now working on getting IETF approval for IF-T

What About Open Source?

Lots of open source support for TNC

University of Applied Arts and Sciences in Hannover, Germany (FHH)

http://trust.inform.fh-hannover.de

libtnc

http://sourceforge.net/projects/libtnc

OpenSEA 802.1X supplicant

http://www.openseaalliance.org

FreeRADIUS

http://www.freeradius.org

omapd IF-MAP Server

http://code.google.com/p/omapd

strongSwan IPsec

http://www.strongswan.org

Open Source TNC SDK (IF-IMV and IF-IMC)

http://sourceforge.net/projects/tncsdk

TCG support for these efforts

- Liaison Memberships
- Open source licensing of TNC header files

TNC Certification Program

Certifies Products that Properly Implement TNC Standards

Certification Process

- Compliance testing using automated test suite from TCG
- Interoperability testing at Plugfest
- Add to list of certified products on TCG web site

Customer Benefits

Confidence that products interoperate

TNC in the Real World

Widely Deployed

- Millions of Seats
- Thousands of Customers
- Dozens of Products

Across Many Sectors

- Government
- Finance
- Health Care
- Retail ...

Case Study – St. Mary's County Public Schools

- Public school district in Maryland
- 16,000 students, 2,100 staff
- 26 schools, Grades K-12
- New, intensive STEM academies
 - STEM = Science, Technology, Engineering, and Math
 - Grades 6-12

Problem

- Received grant for 60 wireless laptops for STEM academies
- Need strongest security
 - Only STEM laptops can connect
 - User-specific access controls
 - Strong health checks on laptops
 - All wireless traffic encrypted

St. Mary's County Public Schools - Solution

Solution

- Juniper UAC with ...
 - Permanently resident agent
 - Continuous health checks
- Non-Juniper wireless access points
 - 802.1X enforcement
 - Integrated via TNC's IF-PEP

Lessons Learned

- Design for the environment
 - Tightly controlled endpoints
 - Strong security requirements
 - Need constant health checking

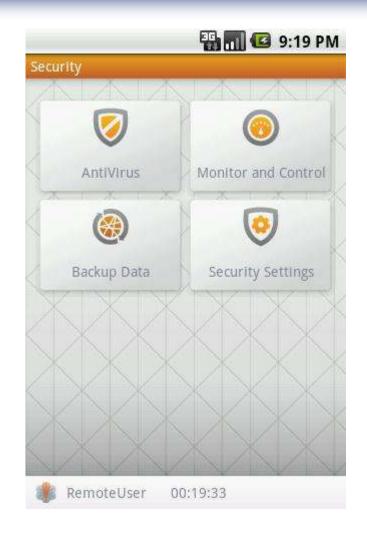
Case Study – Naperville Community School District

Who

- Public school district in Illinois
- 19,000 students, 2,500 staff
- 21 schools, Grades K-12
- Innovative teaching methods

Problem

- Increasing number and variety of network-connected devices
 - District-owned
 - Staff-owned
 - Student-owned
- Must provide network access for all
 - High-speed
 - Cost-effective
 - Secure


Naperville Community School District - Solution

Solution

- District-owned Devices
 - Strict permanent agent
- Non-district Devices
 - Web-based agent
 - Security policies
- Separate guest network
 - Enforced with 802.1X

Lessons Learned

- Design for the environment
 - Platform-independent
 - Lightweight for guests
 - Maintaining security policies

Summary

TNC solves today's security problems with growth for the future

- Flexible open architecture to accommodate rapid change
- Coordinated, automated security for lower costs and better security

TNC = open network security architecture and standards

- Enables multi-vendor interoperability
- Can reuse existing products to reduce costs and improve ROI
- Avoids vendor lock-in

TNC has strongest security

- Optional support for TPM to defeat rootkits
- Thorough and open technical review

Wide support for TNC standards

Many vendors, open source, IETF

For More Information

TNC Web Site

Technical

http://www.trustedcomputinggroup.org/developers/trusted_network_connect

Business

http://www.trustedcomputinggroup.org/solutions/network_security

TNC-WG Co-Chairs

Steve Hanna

Distinguished Engineer, Juniper Networks shanna@juniper.net

Paul Sangster

Chief Security Standards Officer, Symantec

Paul_Sangster@symantec.com

